eXtreme Programming and
TDD

Stefano Fornari, Edoardo Schepis

Example: Fibonacci Function

Our goal: fib(x)
{0,1,1,2,3,5,8, 13,21, 34 }

A number in the Fibonacci sequence is generated by taking the sum of the previous two numbers.

The first test shows that fib(0) = 0.

public void testFibonacci() {
assertEquals(0, fib(0));

Example: Fibonacci Function

Our goal: fib(x)
{0,1,1,2,3,5,8, 13,21, 34 }

A number in the Fibonacci sequence is generated by taking the sum of the previous two numbers.

The first test shows that fib(0) = 0.

public void testFibonacci() {
assertEquals(0, fib(0));

int fib(int n) {
return 0;

Example: Fibonacci Function

The second test shows that fib(1) = 1.

public void testFibonacci() {
assertEquals(0, fib(0));
assertBquals(1, fib(1));

Example: Fibonacci Function

The second test shows that fib(1) = 1.

public void testFibonacci() {
assertEquals(0, fib(0));
assertBquals(1, fib(1));

int fib(int n) {
if (n ==0) return 0;
return 1;

Example: Fibonacci Function

The duplication 1n the test case 1s starting to bug me, and 1t will only get
worse as we add new cases.

Let's drive the test from a table of input and expected values.

public void testFibonacci() {
int cases[][]= {{0,0},{1,1} };
for (int i= 0; 1 < cases.length; i++)
assertEquals(cases[i][1], fib(cases[1][0]));
;

The next case requires 6 keystrokes and no additional lines:
public void testFibonacci() {
int cases[][]= {{0,0},{1,1},{2,1}};
for (int i= 0; 1 < cases.length; 1++)
assertEquals(cases[i][1], fib(cases[1][0]));

Example: Fibonacci Function

Disconcertingly, the test works.

It just so happens that our constant “1” is right for this case as well. On to
the next test:

public void testFibonacci() {

int cases[][]= {{0,0},{1,1},{2,1},{3,2}};
for (int 1= 0; 1 < cases.length; 1++)

assertEquals(cases[1][1], fib(cases[1][0]));

Hooray, it fails!!!

Example: Fibonacci Function

Disconcertingly, the test works.

It just so happens that our constant “1” is right for this case as well. On to
the next test:

public void testFibonacci() {
int cases[][]= {{0,0},{1,1},{2,1},{3,2}};
for (int 1= 0; 1 < cases.length; 1++)
assertEquals(cases[1][1], fib(cases[1][0]));

b
. int fib(int n) {
Hooray, 1t fails!!! if (n == 0) return 0;
if (n <=2) return 1;
return 2;

Example: Fibonacci Function

Now we are ready to generalize. We wrote “2”°, but we don’t really mean
“2”, we mean “1 + 17,

int fib(int n) {
if (n ==0) return 0;
if (n <=2) return 1;

return1+1;

j
That first “1” is an example of fib(n-1): The second “1” is an example of fib(n-2):
int fib(int n) { int fib(int n) {

. if (n ==0) return 0;

if (n == 0) return 0; if (n <=2) return 1;

if (n <= 2) return 1; return fib(n-1) + fib(n-2);

return fib(n-1) + 1; }

Example: Fibonacci Function

Cleaning up now, the same structure should work for fib(2), so we can
tighten up the second condition:

int fib(int n) {
if (n == 0) return 0;
if (n ==1) return 1;
return fib(n-1) + fib(n-2);

DONE

o =
o =
o =

Test Driven Development

How to learn TDD

Many books are articles now printed and published
on the web

It’s OK to read one. It almost doesn’t matter which
one.

lest Driven Development, Kent Beck

Generally, people are still “learning by doing”,
mostly by “doing 1t with somebody that already
knows how”

Definition: Test Driven Development

» A software development process

— Not a testing technique, per se, but depends heavily on
testing as a tool

 Write tests first — the tests determine what code 1s to
be written

» Testing 1s done in a fine-grained fashion

Characteristics of TDD

Makes software development predictable on
— Reliability
— Scheduling, development cost

Results 1in “clean code that works”
— [Ron Jeffries]

I'DD 1s generally a white-box unit-testing mechanism

la

l'aking small steps prevents bugs and the need for
debugging
Design optional; will emerge from the tests 1f necessary

Design not necessary

 First step 1n the procedure will always be to 1dentify a small
change to be made
* That change can be 1dentified from
— a formal design specification,
— a requirement spec,
— a user story (use case),
— or an ad-hoc informal request from a user.

» All tests are saved forever, and are a record of requirements.
— The tests replace the requirements and design specs

~» o0 —»

Cost of development

7

Time _., Traditional

TDD

Rules for developers

Unit testing 1s not separable from coding
Start as simply as possible
Write new code ONLY if a test is failing

— The tests provide the reason for writing a line of code
— Write a failing test before writing a line of code
Eliminate duplication of code and simplify code ruthlessly

— Fewer lines of code mean fewer tests to write and maintain,
prevents mushrooming of the test base

ALL tests are saved 1n the automated regression test suite

Technique

Initially the program works

Add a test that calls a new (unimplemented)
feature; you get a syntax error because the
method 1sn't even defined yet.

Add a stubbed version, which fails the test
(presumably).

Fix 1t and all tests run.
Refactor towards a better design

Run the test again
— “Proves” that the better code 1s still correct

® e O

Technique 2

Identify a “smallest possible” change to be made

Implement test and (the one line of) code for that
change (see previous slide)

Run all tests
Save test and code together 1n source control system
Repeat

Elements of TDD unit tests

Testing and reporting tool (xUnit)
Test suites (groups of tests)

(s

Tests

Mock resources
Test library (assert implementations, etc.)

Product-specific setup library

Why does TDD work?

* Encourages “divide-and-conquer”

* Programmers are never scared to make a change that
might “break’ the system

» The testing time that 1s often squeezed out of the
end of a traditional development cycle cannot be
squeezed out.

eXtreme Programming

What 1s XP?

Who 1s behind XP?
— Kent Beck, Ward Cunningham, Ron Jeffries

Short definition
— lightweight process model for software development

What’s in the name?

— code 1s 1n the centre of the process
— practices are applied extremely

What is new 1n XP?

— none of the ideas or practices in XP are new

— the combination of practices and their extreme
application 1s new

Practices

* XP 1s based on the extreme application of 12
practices (guidelines or rules) that support each
other:

— Planning game — Pair programming

— Frequent releases — Collective code ownership
— System metaphor — Continuous Integration

— Simple design — Forty-hour week

— Tests — On-site customer

— Refactoring — Coding standards

Planning Game

* Pieces: user stories
* Players: customer & developer

e Moves:

— User story writing

e requirements are written by the customer on small index
cards

user stories are written 1n business language
and describe things that the system needs to do
cach user story 1s assigned a business value
Example (payroll system):

- An employee making $10 an hour works four hours of
overtime on Friday and two on Sunday. She should
receive $60 for the Friday and $40 for the Sunday

» for a few months projects there may be 50-100 user stories

Planning Game (2)

e Moves:

— Story estimation
* each user story is assigned a cost by the developer
* cost 1s measured on 1deal weeks (1-3 weeks)
* a story 1s split by the customer if it takes longer than 3
weeks to implement
— Commitment

 customer and developer decide which user stories
constitute the next release

— Value and Risk first

 developer orders the user stories of the next release so that

— more valuable or riskier stories are moved earlier in the schedule
— a fully working (sketchy) system is completed (in a couple of weeks)

Frequent Releases

The development process 1s highly iterative
A release cycle 1s usually up to 3 months

A release cycle consists of iterations up to 3
weeks

In each 1teration the selected user stories are
implemented

Each user story 1s split in programming tasks of
1-3 days

small and frequent releases provide frequent
feedback from the customer

Tests

Tests play the most important and central role in XP
Tests are written before the code 1s developed

— forces concentration on the interface
— accelerates development
— safety net for coding and refactoring

All tests are automated (test suites, testing framework)

If user stories are considered as the requirements then
Tests can be considered as the specification of the
system

2 kinds of test:
— Acceptance tests (functional tests)

« clients provide test cases for their stories
» developers transform these in automatic tests

— Unat tests

» developers write tests for their classes (before implementing the classes)
 All unit tests must run 100% successfully all the time

Refactoring

Change it even if it is not broken!
Process of improving code while preserving its function
The aim of refactoring 1s to

— make the design simpler

— make the code more understandable

— 1mmprove the tolerance of code to change
The code should not need any comments

— There 1s no documentation in XP

— The code and the user stories are the only documents
Useful names should be used (system metaphor)
Refactoring is continuous design
Remove duplicate code

Tests guarantee that refactoring didn’t break anything that
worked!

Pair programming

Two programmers sit together in front of a workstation
— one enters code
— one reviews the code and thinks

“Pair programming 1s a dialog between two people trying to
simultaneously program and understand how to program better”,
Kent Beck

Second most important practice after tests
Pairs change continuously (few times in a day)
— every programmer knows all the aspects of the system
— a programmer can be easily replaced in the middle of the
project
Costs 10-15% more than stand-alone programming
Code 1s simpler (fewer LOC) with less defects (15%)
Ensures continuous code inspection (SE)

Collective code ownership

The code does not belong to any programmer but to the team

Any programmer can (actually should) change any of the code at
any time in order to

— make 1t simpler

— make 1t better
Encourages the entire team to work more closely together
Everybody tries to produce a high-quality system

— code gets cleaner

— system gets better all the time

— everybody i1s familiar with most of the system

Continuous integration

Daily integration at least

The whole system 1s built (integrated) every
couple of hours

XP feedback cycle:

— develop unit test

— code

— 1ntegrate

— run all unaits tests (100%)
— release

A working tested system 1s always available

40 hour week

“Overtime 1s defined as time 1n the office when
you don’t want to be there” Ron Jeffries

Programmers should not work more than one
week of overtime

If more 1s needed then something 1s wrong with
the schedule

Keep people happy and balanced

Rested programmers are more likely to refactor
effectively, think of valuable tests and handle the
strong team 1nteraction

On-site customer

» User stories are not detailed, so there are always
questions to ask the customer

* The customer must always be available
— to resolve ambiguities
— set priorities
— provide test cases

* Customer 1s considered part of the team

Coding standards

* Coding standards make pair progamming and
collective code ownership easier

 Common name choosing scheme
 Common code formatting

Listen-Test-Code-Design

Traditional Software Lifecycle:
— Listen - Design - Code - Test

XP lifecycle
— Listen - Test - Code - Design

Listen to customers while gathering requirements
Develop test cases (functional tests and unit tests)
Code the objects

Design (refactor) as more objects are added to the
system

Requirements

small teams (up to 10-15 programmers)

common workplace and working hours

all tests must be automated and executed 1n short
time

on-site customer

developer and client must commit 100% to XP
practices

XP 1s successtul because...

XP can handle changing customer requirements,
even late 1n the life cycle

XP stresses customer satisfaction; 1t delivers
— what the customer needs
— when the customer needs it

XP emphasises team work

XP 1s fun

