
eXtreme Programming and
TDD

Stefano Fornari, Edoardo Schepis

 2

Example: Fibonacci Function
Our goal: fib(x)

{ 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 }
A number in the Fibonacci sequence is generated by taking the sum of the previous two numbers.

The first test shows that fib(0) = 0.

public void testFibonacci() {
assertEquals(0, fib(0));

}

int fib(int n) {
return 0;

}

 3

Example: Fibonacci Function
Our goal: fib(x)

{ 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 }
A number in the Fibonacci sequence is generated by taking the sum of the previous two numbers.

The first test shows that fib(0) = 0.

public void testFibonacci() {
assertEquals(0, fib(0));

}

int fib(int n) {
return 0;

}

 4

Example: Fibonacci Function

The second test shows that fib(1) = 1.

public void testFibonacci() {
assertEquals(0, fib(0));
assertEquals(1, fib(1));

}

int fib(int n) {
if (n == 0) return 0;
return 1;

}

 5

Example: Fibonacci Function

The second test shows that fib(1) = 1.

public void testFibonacci() {
assertEquals(0, fib(0));
assertEquals(1, fib(1));

}

int fib(int n) {
if (n == 0) return 0;
return 1;

}

 6

Example: Fibonacci Function
The duplication in the test case is starting to bug me, and it will only get

worse as we add new cases.
Let's drive the test from a table of input and expected values.

public void testFibonacci() {
int cases[][]= {{0,0},{1,1}};
for (int i= 0; i < cases.length; i++)

assertEquals(cases[i][1], fib(cases[i][0]));
}
The next case requires 6 keystrokes and no additional lines:
public void testFibonacci() {

int cases[][]= {{0,0},{1,1},{2,1}};
for (int i= 0; i < cases.length; i++)

assertEquals(cases[i][1], fib(cases[i][0]));
}

 7

Example: Fibonacci Function
Disconcertingly, the test works.
It just so happens that our constant “1” is right for this case as well. On to

the next test:

public void testFibonacci() {
int cases[][]= {{0,0},{1,1},{2,1},{3,2}};
for (int i= 0; i < cases.length; i++)

assertEquals(cases[i][1], fib(cases[i][0]));
}

Hooray, it fails!!!
int fib(int n) {

if (n == 0) return 0;
if (n <= 2) return 1;
return 2;

}

 8

Example: Fibonacci Function
Disconcertingly, the test works.
It just so happens that our constant “1” is right for this case as well. On to

the next test:

public void testFibonacci() {
int cases[][]= {{0,0},{1,1},{2,1},{3,2}};
for (int i= 0; i < cases.length; i++)

assertEquals(cases[i][1], fib(cases[i][0]));
}

Hooray, it fails!!!
int fib(int n) {

if (n == 0) return 0;
if (n <= 2) return 1;
return 2;

}

 9

Example: Fibonacci Function
Now we are ready to generalize. We wrote “2”, but we don’t really mean

“2”, we mean “1 + 1”.
int fib(int n) {

if (n == 0) return 0;
if (n <= 2) return 1;
return 1 + 1;

}
That first “1” is an example of fib(n-1):
int fib(int n) {

if (n == 0) return 0;
if (n <= 2) return 1;
return fib(n-1) + 1;

}

The second “1” is an example of fib(n-2):
int fib(int n) {

if (n == 0) return 0;
if (n <= 2) return 1;
return fib(n-1) + fib(n-2);

}

 10

Example: Fibonacci Function
Cleaning up now, the same structure should work for fib(2), so we can

tighten up the second condition:

int fib(int n) {
if (n == 0) return 0;
if (n == 1) return 1;
return fib(n-1) + fib(n-2);

}

DONE!!!

 11

Test Driven Development

October 2006 © Copyright 2006, Larry A. Beaty. Copying and distribution of this document is permitted in any medium, provided this notice is preserved.12

How to learn TDD

• Many books are articles now printed and published
on the web

• It’s OK to read one. It almost doesn’t matter which
one.

• Test Driven Development, Kent Beck

• Generally, people are still “learning by doing”,
mostly by “doing it with somebody that already
knows how”

October 2006 © Copyright 2006, Larry A. Beaty. Copying and distribution of this document is permitted in any medium, provided this notice is preserved.13

Definition: Test Driven Development

• A software development process
– Not a testing technique, per se, but depends heavily on

testing as a tool
• Write tests first – the tests determine what code is to

be written
• Testing is done in a fine-grained fashion

October 2006 © Copyright 2006, Larry A. Beaty. Copying and distribution of this document is permitted in any medium, provided this notice is preserved.14

Characteristics of TDD

• Makes software development predictable on
– Reliability
– Scheduling, development cost

• Results in “clean code that works”
– [Ron Jeffries]

• TDD is generally a white-box unit-testing mechanism
• Taking small steps prevents bugs and the need for

debugging
• Design optional; will emerge from the tests if necessary

October 2006 © Copyright 2006, Larry A. Beaty. Copying and distribution of this document is permitted in any medium, provided this notice is preserved.15

Design not necessary

• First step in the procedure will always be to identify a small
change to be made

• That change can be identified from
– a formal design specification,
– a requirement spec,
– a user story (use case),
– or an ad-hoc informal request from a user.

• All tests are saved forever, and are a record of requirements.
– The tests replace the requirements and design specs

October 2006 © Copyright 2006, Larry A. Beaty. Copying and distribution of this document is permitted in any medium, provided this notice is preserved.16

Cost of development

Time

C
o
s
t

Traditional

TDD

October 2006 © Copyright 2006, Larry A. Beaty. Copying and distribution of this document is permitted in any medium, provided this notice is preserved.17

Rules for developers

• Unit testing is not separable from coding
• Start as simply as possible
• Write new code ONLY if a test is failing

– The tests provide the reason for writing a line of code
– Write a failing test before writing a line of code

• Eliminate duplication of code and simplify code ruthlessly
– Fewer lines of code mean fewer tests to write and maintain,

prevents mushrooming of the test base
• ALL tests are saved in the automated regression test suite

October 2006 © Copyright 2006, Larry A. Beaty. Copying and distribution of this document is permitted in any medium, provided this notice is preserved.18

Technique
• Initially the program works
• Add a test that calls a new (unimplemented)

feature; you get a syntax error because the
method isn't even defined yet.

• Add a stubbed version, which fails the test
(presumably).

• Fix it and all tests run.
• Refactor towards a better design
• Run the test again

– “Proves” that the better code is still correct

October 2006 © Copyright 2006, Larry A. Beaty. Copying and distribution of this document is permitted in any medium, provided this notice is preserved.19

Technique 2

• Identify a “smallest possible” change to be made
• Implement test and (the one line of) code for that

change (see previous slide)

• Run all tests
• Save test and code together in source control system
• Repeat

October 2006 © Copyright 2006, Larry A. Beaty. Copying and distribution of this document is permitted in any medium, provided this notice is preserved.20

Elements of TDD unit tests

• Testing and reporting tool (xUnit)
• Test suites (groups of tests)
• Tests
• Mock resources
• Test library (assert implementations, etc.)

• Product-specific setup library

October 2006 © Copyright 2006, Larry A. Beaty. Copying and distribution of this document is permitted in any medium, provided this notice is preserved.21

Why does TDD work?

• Encourages “divide-and-conquer”
• Programmers are never scared to make a change that

might “break” the system
• The testing time that is often squeezed out of the

end of a traditional development cycle cannot be
squeezed out.

 22

eXtreme Programming

 23

What is XP?
• Who is behind XP?

– Kent Beck, Ward Cunningham, Ron Jeffries
• Short definition

– lightweight process model for software development
• What’s in the name?

– code is in the centre of the process
– practices are applied extremely

• What is new in XP?
– none of the ideas or practices in XP are new
– the combination of practices and their extreme

application is new

 24

Practices

• XP is based on the extreme application of 12
practices (guidelines or rules) that support each
other:

– Planning game
– Frequent releases
– System metaphor
– Simple design
– Tests
– Refactoring

– Pair programming
– Collective code ownership
– Continuous Integration
– Forty-hour week
– On-site customer
– Coding standards

 25

Planning Game
• Pieces: user stories
• Players: customer & developer
• Moves:

– User story writing
• requirements are written by the customer on small index

cards
• user stories are written in business language
• and describe things that the system needs to do
• each user story is assigned a business value
• Example (payroll system):

– An employee making $10 an hour works four hours of
overtime on Friday and two on Sunday. She should
receive $60 for the Friday and $40 for the Sunday

• for a few months projects there may be 50-100 user stories

 26

Planning Game (2)
• Moves:

– Story estimation
• each user story is assigned a cost by the developer
• cost is measured on ideal weeks (1-3 weeks)
• a story is split by the customer if it takes longer than 3

weeks to implement
– Commitment

• customer and developer decide which user stories
constitute the next release

– Value and Risk first
• developer orders the user stories of the next release so that

– more valuable or riskier stories are moved earlier in the schedule
– a fully working (sketchy) system is completed (in a couple of weeks)

 27

Frequent Releases
• The development process is highly iterative
• A release cycle is usually up to 3 months
• A release cycle consists of iterations up to 3

weeks
• In each iteration the selected user stories are

implemented
• Each user story is split in programming tasks of

1-3 days

• small and frequent releases provide frequent
feedback from the customer

 28

Tests
• Tests play the most important and central role in XP
• Tests are written before the code is developed

– forces concentration on the interface
– accelerates development
– safety net for coding and refactoring

• All tests are automated (test suites, testing framework)
• If user stories are considered as the requirements then

Tests can be considered as the specification of the
system

• 2 kinds of test:
– Acceptance tests (functional tests)

• clients provide test cases for their stories
• developers transform these in automatic tests

– Unit tests
• developers write tests for their classes (before implementing the classes)
• All unit tests must run 100% successfully all the time

 29

Refactoring
• Change it even if it is not broken!
• Process of improving code while preserving its function
• The aim of refactoring is to

– make the design simpler
– make the code more understandable
– improve the tolerance of code to change

• The code should not need any comments
– There is no documentation in XP
– The code and the user stories are the only documents

• Useful names should be used (system metaphor)
• Refactoring is continuous design
• Remove duplicate code
• Tests guarantee that refactoring didn’t break anything that

worked!

 30

Pair programming

• Two programmers sit together in front of a workstation
– one enters code
– one reviews the code and thinks

• “Pair programming is a dialog between two people trying to
simultaneously program and understand how to program better”,
Kent Beck

• Second most important practice after tests
• Pairs change continuously (few times in a day)

– every programmer knows all the aspects of the system
– a programmer can be easily replaced in the middle of the

project
• Costs 10-15% more than stand-alone programming
• Code is simpler (fewer LOC) with less defects (15%)
• Ensures continuous code inspection (SE)

 31

Collective code ownership
• The code does not belong to any programmer but to the team
• Any programmer can (actually should) change any of the code at

any time in order to
– make it simpler
– make it better

• Encourages the entire team to work more closely together
• Everybody tries to produce a high-quality system

– code gets cleaner
– system gets better all the time
– everybody is familiar with most of the system

 32

Continuous integration
• Daily integration at least
• The whole system is built (integrated) every

couple of hours
• XP feedback cycle:

– develop unit test
– code
– integrate
– run all units tests (100%)
– release

• A working tested system is always available

 33

40 hour week

• “Overtime is defined as time in the office when
you don’t want to be there” Ron Jeffries

• Programmers should not work more than one
week of overtime

• If more is needed then something is wrong with
the schedule

• Keep people happy and balanced
• Rested programmers are more likely to refactor

effectively, think of valuable tests and handle the
strong team interaction

 34

On-site customer

• User stories are not detailed, so there are always
questions to ask the customer

• The customer must always be available
– to resolve ambiguities
– set priorities
– provide test cases

• Customer is considered part of the team

 35

Coding standards

• Coding standards make pair progamming and
collective code ownership easier

• Common name choosing scheme
• Common code formatting

 36

Listen-Test-Code-Design
• Traditional Software Lifecycle:

– Listen - Design - Code - Test
• XP lifecycle

– Listen - Test - Code - Design

• Listen to customers while gathering requirements
• Develop test cases (functional tests and unit tests)
• Code the objects
• Design (refactor) as more objects are added to the

system

 37

Requirements

• small teams (up to 10-15 programmers)
• common workplace and working hours
• all tests must be automated and executed in short

time
• on-site customer
• developer and client must commit 100% to XP

practices

 38

XP is successful because...

• XP can handle changing customer requirements,
even late in the life cycle

• XP stresses customer satisfaction; it delivers
– what the customer needs
– when the customer needs it

• XP emphasises team work

• XP is fun

